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SUMMARY

This paper reports on the implementation and testing, within a full non-linear multi-grid environment,
of a new pressure-based algorithm for the prediction of multi-�uid �ow at all speeds. The algorithm
is part of the mass conservation-based algorithms (MCBA) group in which the pressure correction
equation is derived from overall mass conservation. The performance of the new method is assessed
by solving a series of two-dimensional two-�uid �ow test problems varying from turbulent low Mach
number to supersonic �ows, and from very low to high �uid density ratios. Solutions are generated
for several grid sizes using the single grid (SG), the prolongation grid (PG), and the full non-linear
multi-grid (FMG) methods. The main outcomes of this study are: (i) a clear demonstration of the ability
of the FMG method to tackle the added non-linearity of multi-�uid �ows, which is manifested through
the performance jump observed when using the non-linear multi-grid approach as compared to the SG
and PG methods; (ii) the extension of the FMG method to predict turbulent multi-�uid �ows at all
speeds. The convergence history plots and CPU-times presented indicate that the FMG method is far
more e�cient than the PG method and accelerates the convergence rate over the SG method, for the
problems solved and the grids used, by a factor reaching a value as high as 15. Copyright ? 2003
John Wiley & Sons, Ltd.

KEY WORDS: multi-grid; two-dimensional multi-�uid �ow; two-dimensional multiphase �ow;
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INTRODUCTION

The numerical simulation of multi-�uid �ow is currently one of the most challenging areas in
computational �uid dynamics (CFD) and has garnered over the last decade the research e�orts
of an increasingly larger segment of the CFD community (e.g. References [1–3]). Although
this type of �ow plays a very important role in several process industries (petrochemical, food,

∗ Correspondence to: F. Moukalled, Mechanical Engineering Department, Faculty of Engineering & Architecture,
American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.

† E-mail: memouk@aub.edu.lb

Contract=grant sponsor: European O�ce of Aerospace Research and Development (EOARD); contract=grant number:
SPC00-4071

Received 14 August 2002
Copyright ? 2003 John Wiley & Sons, Ltd. Revised 18 November 2002



1222 M. DARWISH, F. MOUKALLED AND B. SEKAR

etc.), the use of CFD for its simulation is still restricted to a relatively small class of problems
and its full potential is yet to be realized. This situation is largely due to the inherently
complicated physics of such �ows, which translates into a signi�cant increase in numerical
di�culties that can be linked to a number of factors: (i) the extreme complexity of the multi-
�uid Navier–Stokes equations (since for n-�uids there are n continuity and n momentum
equations), (ii) the substantial increase in non-linearity due to inter-�uid mass, momentum,
energy and continuity-volume fraction couplings (on top of the pressure–velocity coupling
present in single �uid �ow algorithms), (iii) and the segregated nature of many of the multi-
�uid algorithms [4, 5] that does not resolve the di�erent couplings in an implicit manner. This
has left CFD users in the industrial sector with an unenviable situation where the simulation
of large industrial-type multi-�uid �ow problems is still a rather uncertain proposition highly
dependent on initial conditions, under-relaxation factors, model simpli�cation, mesh size, in
addition to many other numerical parameters.
It is the authors’ view that overcoming these hurdles can be accomplished by a multi-

pronged approach in which the development of more general multi-�uid algorithms suitable
for the simulation of a wider range of physical phenomena, the extensive use of parallelization
and the use of multi-grid techniques have to play essential roles. The �rst area has been
recently the subject of a number of papers by the authors [6, 7], and the reader is referred to
a recent review of all-speed multi-�uid �ow algorithms [8] that includes several sections on
robustness improvement techniques as well as a set of new algorithms capable of resolving
the diverse pressure–velocity–density–volume fraction couplings.
Parallelization already plays a major role in the simulation of large single �uid �ow prob-

lems, and can play a similar role in the simulation of multi-�uid �ows. Several methods have
been proposed to parallelize Navier–Stokes solvers (e.g. functional decomposition [9], domain
decomposition [10]). The standard approach is the one in which the computational domain is
decomposed into a number of smaller sub-domains that are solved in parallel with required
data exchanged at speci�c points during the solution and assembly procedures [11, 12]. This
has the bene�ts of applying more processing power to the problem in addition to subdivid-
ing the global domain into a number of sub-domains where the standard iterative algorithms
operate more e�ciently.
Multi-grid techniques achieve similar feats through di�erent means. In this case the global

domain is abstracted into a series of coarser domains, where the solution is carried out more
e�ciently and the results injected into the �ner computational domains, thus accelerating
the solution procedure and yielding major improvements in both speed of convergence and
robustness especially when dealing with highly non-linear problems [13–19].
This paper describes an extension of the full approximation storage full multi-grid (FAS-

FMG) [14, 20] algorithm to a recently developed all-speed multi-�uid �ow algorithm based
on global mass conservation [7]. A number of implementation issues are addressed, such as
the use of special inter-grid transfer operators to maintain the realizability of the solution and the
special treatment of the volume fraction equation during prolongation. In order to assess the
e�ectiveness of the FAS-FMG multi-�uid implementation, a series of two-dimensional two-
�uid �ow test problems varying from subsonic low Mach number to supersonic �ows, and
very low to high �uid density ratios, are compared using a series of computational domains.
In each case a solution is obtained using (i) a single grid approach (SG), (ii) a prolongation
only approach (PG) whereby the solution moves in one direction starting on the coarse grid
and ending on the �nest grid with the solution obtained on level n used as initial guess for the
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solution on level (n+ 1), and (iii) �nally a full multi-grid (FMG) approach with a W cycle.
The aim being to quantify the e�ect of the FMG algorithm in addressing the increased and
complex non-linearity inherent in multi-�uid �ow problems. Convergence history and CPU
time are compared for all cases.
In what follows the governing equations for a general two-dimensional two-�uid �ow sys-

tem are �rst presented followed by a description of the discretization method and the all-speed
multi-�uid �ow algorithm that is used. The test problems are then discussed and the perfor-
mance of the three di�erent approaches detailed.

THE GOVERNING EQUATIONS

Di�erent routes can be pursued in deriving the conservation equations for multi-�uid �ow
systems, the most formal of which is the local averaging technique [21, 22]. In this approach,
classical conservation equations valid at the microscopic level are averaged over a representa-
tive local volume to obtain an averaged description of the individual �uids behaviour at each
point in space. The main restriction for this model is that the representative local volume must
be much smaller than the simulated physical domain and large compared to the characteristic
size of the interfacial structures [23, 24]. To account for turbulence several ad hoc extensions
of single �uid turbulence models have been developed with various degree of success. In this
work a two-�uid k–� model is used. The �uidic conservation equations can thus be written
as

@(r (k)�(k))
@t

+∇ · (r (k)�(k)u(k)) = 0 (1)

@(r (k)�(k)u(k))

@t
+∇ · (r (k)�(k)u(k)u(k)) =∇ · [r (k)(�(k) + �(k)t ))∇u(k)]

+ r (k)(−∇P + B(k)) + I(k)M (2)

@(r (k)�(k)T (k))
@t

+∇ · (r (k)�(k)u(k)T (k)) =∇ ·
[
r (k)

(
�(k)

Pr (k)
+
�(k)t
Pr(k)t

)
∇T (k)

]

+
r (k)

c(k)P

{
�(k)T (k)

[
@P
@t
+∇ · (Pu(k))− P∇ · (u(k))

]

+�(k) + q̇(k)
}
+
I (k)E
c(k)P

(3)

where the superscript k refers to the kth �uid, r the volume fraction, � the density, u the
velocity vector, � and �t the laminar and turbulent viscosities, Pr and Prt the laminar and
turbulent Prandtl numbers, � the coe�cient of thermal expansion, P the pressure, B the
body force term, T the temperature, � the viscous dissipation function, q̇ the internal heat
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generation, cP the speci�c heat, and IM and IE the interfacial momentum and energy transfer
terms.
Several �ow-dependent models have been proposed for incorporating the e�ect of turbulence

on interfacial mass, momentum and energy transfer, which vary in complexity from simple
algebraic [25] models to state-of-the-art Reynolds-stress [26] models. For the multi-�uid �ow
two-equation k–� model adopted in this work, the �uidic conservation equations governing
the turbulence kinetic energy (k) and turbulence dissipation rate (�) for the kth �uid are given
by

@(r (k)�(k)k(k))
@t

+∇ · (r (k)�(k)u(k)k(k)) =∇ ·
(
r (k)

�(k)t
�(k)k

∇k(k)
)

+ r (k)�(k)(G(k) − �(k)) + I (k)k (4)

@(r (k)�(k)�(k))
@t

+∇ · (r (k)�(k)u(k)�(k)) =∇ ·
(
r (k)

�(k)t
�(k)�

∇�(k)
)

+ r (k)�(k)
�(k)

k(k)
(C1�G(k) − c2��(k)) + I (k)� (5)

where I (k)k and I (k)� represent the interfacial turbulence terms. The turbulent viscosity is calcu-
lated as

�(k)t =C��
(k) [k

(k)]2

�(k)
(6)

For two-phase �ows, several extensions of the k–� model that are based on calculating the
turbulent viscosity by solving the k and � equations for the carrier or continuous phase
only have been proposed in References [27, 28]. In a recent article, Cokljat and Ivanov [29]
presented a phase coupled k–� turbulence model, intended for the cases where a non-dilute
secondary phase is present, in which the k–� transport equations for all phases are solved.
Since the method is still not well developed, the �rst approach in which only the k and �
equations for the carrier phase are solved is adopted in this work.
The above set of di�erential equations has to be solved in conjunction with constraints

on certain variables represented by algebraic relations. These auxiliary relations include the
equations of state, the geometric conservation equation, and the interfacial mass, momentum,
energy and turbulence energy transfers.
Physically, the geometric conservation equation is a statement indicating that the sum of

volumes occupied by the di�erent �uids within a cell, r (k), is equal to the volume of the cell
containing the �uids, i.e.

∑
k
r (k) = 1 (7)
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For a compressible multi-�uid �ow, auxiliary equations of state relating density to pressure
and temperature are needed. For the kth phase, such an equation can be written as

�(k) =�(k)(P; T (k)) (8)

Several models have been developed for computing the interfacial mass, momentum, energy
and turbulence energy transfers terms. The closures used in this work will be detailed whenever
they arise while solving problems.

BOUNDARY CONDITIONS

The solution to the above system of equations requires the description of in�ow, out�ow and
no-�ow boundary conditions. This speci�cation is a�ected by whether the �uid is modelled
as compressible or incompressible.
At in�ow boundaries, the practice with incompressible �ow is either to specify the velocity

�elds and interpolate the pressure from within the domain or to specify the pressure (total
or static) and the velocity direction. For general transport variables, the boundary values are
speci�ed at inlets. A similar treatment is applied to compressible �ow with subsonic inlet.
For supersonic inlets, all variables should be speci�ed.
At wall boundaries, a no-slip condition is imposed for the momentum equations by forcing

the velocity �eld tangent to the wall to be equal to the wall velocity. For a slip condition
the wall shear stress is set to zero. Generally, boundary conditions for other scalars are either
of the Dirichlet (speci�ed value) or Von-Neumann type (speci�ed �ux). For turbulent �ows,
the treatment of turbulent eddy dissipation at the wall follows the standard law-of-the-wall
practice to ensure a balance between turbulent production and dissipation. A no-�ow boundary
condition for viscous compressible �ows is identical to that for incompressible �ows. For
inviscid �ows, the �ow at a solid wall is similar to a slip-wall condition.
Along a symmetry line, the normal component of velocity and the normal gradient of the

parallel component of velocity are set to zero, while a zero normal �ux is speci�ed for scalar
transport.
For out�ow boundaries, the common practice is to assume that the di�usive �ux is zero

and the total �ux is purely convective in nature, which is equivalent to setting the streamwise
gradients to zero. In addition, at supersonic outlets the pressure is extrapolated from the
domain interior. The implementation of these and other boundary conditions are reviewed in
Reference [20].

DISCRETIZATION PROCEDURE

Denoting a typical representative variable associated with phase (k) by �(k), Equations (1)–(5)
can be presented via the following general �uidic equation:

@(r (k)�(k)�(k))
@t

+∇ · (r (k)�(k)u(k)�(k))=∇ · (r (k)�(k)∇�(k)) + r (k)Q(k) (9)

where the expressions for �(k) and Q(k) can be deduced from the parent equations.
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Figure 1. Control volume.

In the �nite-volume method, Equation (9) is integrated over a �nite volume, or cell, to
yield

∫∫
�

@(r (k)�(k)�(k))
@t

d� +
∫∫

�
∇ · (r (k)�(k)u(k)�(k)) d�

=
∫∫

�
∇ · (r (k)�(k)∇�(k)) d� +

∫∫
�
r (k)Q(k) d� (10)

where � is the volume of the control cell (Figure 1). Using the divergence theorem to
transform the volume integral into a surface integral and then replacing the surface integral
by a summation of the �uxes over the faces of the cell, Equation (10) is transformed to

@(r (k)�(k)�(k)�)
@t

+
∑

nb=e;w; n; s; t; b
(J(k)Dnb + J(k)Cnb )= r (k)Q(k)� (11)

where J(k)Dnb and J(k)Cnb are the di�usive and convective �uxes, respectively. The discretization of
the di�usion term is second-order accurate and follows the derivations presented in Reference
[30]. For the convective terms, the high resolution (HR) SMART [31] scheme is employed
for all variables including the interface densities, and its formulation derived using the NVSF
methodology [32]. Replacing the face values by their functional relationship relating to the
node values of �, Equation (11) is transformed after some algebraic manipulations into the
following discretized equation:

A(k)P �
(k)
P =

∑
nb
A(k)nb �

(k)
nb + B

(k)
P (12)

where the coe�cients A(k)P and A(k)nb depend on the selected scheme and B(k)P is the source
term of the discretized equation. In compact form, the above equation can be written
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as

�(k) =HP[�(k)]=

∑
nb
A(k)nb �

(k)
nb + B

(k)
P

A(k)P
(13)

The discretization procedure for the momentum equation yields an algebraic equation of the
form

u(k)P =HP[u(k)]− r (k)D(k)P ∇P(P) (14)

The �uidic mass-conservation equation (Equation (1)) can represent either a �uidic volume
fraction equation, in this case r (k) becomes the principal variable and the equation can be
written as

r(k)P =HP[r (k)] (15)

or a �uidic continuity equation, which can be used in deriving the pressure correction equation,
in this case it is written as

(r(k)P �
(k)
P )− (r(k)P �(k)P )old

�t
�+�P[r (k)�(k)u(k) ·S]= 0 (16)

where the � operator represents the following operation:

�P[	]=
∑

f=nb(P)
	f (17)

SOLUTION PROCEDURE

The number of equations describing an n-�uid �ow situation are: n �uidic momentum equa-
tions, n �uidic volume fraction (or mass conservation) equations, a geometric conservation
equation, and for the case of a compressible �ow an additional n �uidic energy equations
and n auxiliary pressure–density relations. Moreover, the variables involved are the n �uidic
velocity vectors, the n �uidic volume fractions, the pressure �eld, and for a compressible �ow
an additional n �uidic density �elds and n �uidic enthalpy �elds. In the current work, the n
momentum equations are used to calculate the n velocity �elds, n− 1 volume fraction (mass
conservation) equations are used to calculate n−1 volume fraction �elds, and the last volume
fraction �eld calculated using the geometric conservation equation

r(n) = 1− ∑
k �=n
r (k) (18)

The remaining volume fraction equation can be used to calculate the pressure �eld that is
shared by all phases. However, instead of using this last volume fraction equation, in the class
of mass conservation-based algorithms (MCBA) the global conservation equation is employed,
i.e. the sum of the various �uidic mass conservation equations, to derive a pressure correction
equation as outlined next.
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THE PRESSURE CORRECTION EQUATION

To derive the pressure-correction equation, the �uidic mass conservation equations are summed
to yield the global mass conservation equation given by

∑
k

{
(r(k)P �

(k)
P )− (r(k)P �(k)P )old

�t
�+�P(r (k)�

(k)
P u

(k) ·S)
}
=0 (19)

In the predictor stage a guessed or an estimated pressure �eld from the previous iteration,
denoted by P◦, is substituted into the momentum equations. The resulting velocity �elds
denoted by u(k)∗ which now satisfy the momentum equations will not, in general, satisfy the
mass conservation equations until �nal convergence. Thus, corrections are needed in order
to yield velocity and pressure �elds that satisfy both equations. Denoting the corrections for
pressure, velocity and density by P′; u(k)

′
and �(k)

′
, respectively, the corrected �elds are

written as

P=P◦ + P′; u(k) = u(k)
∗
+ u(k)

′
; �(k) =�(k)

◦
+ �(k)

′
(20)

Hence, the equations solved in the predictor stage are

u(k)∗P =HP[u(k)∗]− r(k)◦D(k)P ∇PP◦ (21)

while the �nal solution satis�es

u(k)P =HP[u(k)]− r (k)D(k)P ∇PP (22)

Subtracting the two equation sets (Equations (22) and (21)) from each other and neglecting
correction to the volume fraction �eld yields the following equation involving the correction
terms:

u(k)
′

P =HP[u(k)
′
]− r(k)◦D(k)P ∇PP′ (23)

Moreover, the new density and velocity �elds, �(k) and u(k), will satisfy the overall mass
conservation equation if

∑
k

{
(r(k)◦P �(k)P )− (r(k)P �(k)P )old

�t
�+�P[r(k)◦�(k)u(k) ·S]

}
=0 (24)

Expanding the (�(k)u(k)) term, one gets

(�(k)∗ + �(k)
′
)(u(k)∗ + u(k)

′
)=�(k)∗u(k)∗ + �(k)∗u(k)

′
+ �(k)

′
u(k)∗ + �(k)

′
u(k)

′
(25)

Substituting Equations (25) and (23) into Equation (24), rearranging, and replacing density
correction by pressure correction, the �nal form of the pressure-correction equation is written
as

∑
k

{
�
�t
r(k)◦P C(k)� P

′
P +�P[r(k)◦U (k)∗C(k)� P

′]−�P[r(k)
◦
�(k)∗(r(k)

◦
D(k)∇P′) ·S]

}

=−∑
k

{
r(k)◦P �(k)∗P − (r(k)P �(k)P )old

�t
�+�P[r(k)◦�(k)∗U (k)∗]

}
(26)
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The corrections are then applied to the velocity, pressure and density �elds using the following
equations:

u(k)∗P = u(k)◦P − r(k)◦D(k)P ∇PP′; P∗=P◦ + P′; �(k)∗=�(k)◦ + C(k)� P
′ (27)

Numerical experiments using the above approach to simulate air–water �ows have shown poor
conservation of the lighter �uid. This problem can be considerably alleviated by normalizing
the individual continuity equations, and hence the global mass conservation equation, by
means of a weighting factor such as a reference density �(k) (which is �uid dependent). This
approach has been adopted in solving all problems presented in this work (see Reference [8]
for details).

THE MCBA-SIMPLE ALGORITHM

Now that the individual components of the discretization procedure have been derived, the
MCBA-SIMPLE algorithm [19], which is basically an extension of the single �uid SIMPLE
algorithm, can be presented. The MCBA algorithm is used to control the grid level global
iteration. The sequence of events is as follows:

1. Loop over the �uids and solve all �uidic momentum equations.
2. Loop over the �uids to assemble the pressure correction equation from the sum of the
�uidic continuity equations, and solve the pressure correction equation.

3. Correct the pressure and then loop over �uids and correct the velocities, and densities.
4. For all the �uids except one solve for the volume fractions using the �uidic mass con-
servation equations. For the last �uid compute the volume fraction using Equation (7).

5. Loop over �uids and solve the �uidic scalar equations (k; �; T , etc.).
6. Return to the �rst step and repeat until convergence.

THE MULTI-GRID STRATEGY

Similar to other iterative methods, the rate of convergence of the above-described solution pro-
cedure does not scale linearly with grid size, rather the convergence rate decreases drastically
as the number of grid points increases. This behaviour is attributed to the speed at which the
iterative solver carries the boundary information across the domain (e.g. with SOR one grid
point per iteration). This process can be accelerated through the use of multi-grid methods,
whereby a series of consecutively coarser grids, in this case generated through agglomeration
of four �ner grid cells two in each direction, are used to accelerate the information transfer
process. In mathematical terms, the low-frequency error components in the �ner grid appear
on coarser grids as high-frequency Fourier modes that are e�ciently resolved by iterative
relaxation solvers. For a review of multi-grid methods the reader is referred, among others,
to References [14, 20]. The multi-grid strategy adopted in this work is the FAS-FMG method
[20] outlined in what follows.
Computations start at the coarsest level, where a converged solution is �rst obtained; this

solution is then interpolated onto the next �ner mesh, and used as initial guess. This �rst
stage is called the prolongation stage (see Figure 2(a)). Iterations are then performed on
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(a)                (b) 

Figure 2. (a) The prolongation only and (b) FMG strategies.

the �ner mesh before transferring, restricting, the solution back to the coarser mesh. To
retain the same approximation on all grid levels, a forcing term is added to the discrete
coarse grid conservation equations. This term represents the truncation error on the coarse
grid with respect to the �ne grid. After performing a number of iterations on the coarse
mesh, the solution is transferred back, injected, to the �ner mesh in the form of a correction
that accelerates the convergence rate. Performing a number of iterations on the �ner grid
then smooths the solution �eld. This process is repeated on that level until convergence is
achieved. At this point the solution is interpolated onto the next �ner mesh and the process
repeated until the �nest mesh is reached (see Figure 2(b)). This strategy has been applied
to both incompressible and compressible supersonic multi-�uid �ows and great savings have
been realized as will be shown in the results section.
The control of inter-grid transfer could either be based upon a dynamic criterion like the

residual reduction rate or made static via a pre-assigned number of smoother iterations. In
this work, the decision on how many iterations to perform on the various grids during the
injection and restriction phases was assigned a priori based on experimentation. The values
used are the ones that were found to require the lowest computational e�orts. Moreover, the
optimum number of iterations to be performed on each level was found to be both problem
and grid dependent.
In the restriction step the coarse grid variables are computed from the �ne grid values

as

�̃C =
1
4
∑
i=1:::4

(�Fi +∇�Fi · dFiC) (28)

while in the injection step the �ne grid corrections are computed from the coarse grid values
as

�′
Fi =�

′
C +∇�′

C · dCFi (29)
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where d is the position vector connecting points C and Fi and �′
C given by

�′
C =�C − �̃C (30)

The special character of the volume fraction and k–� equations necessitates modi�cation to
the prolongation procedure as described next.
While extrapolating the volume fraction �eld from the coarse to the �ne grid, the prolon-

gation operator may yield negative volume fraction values or values that are greater than one.
Such unphysical values are detrimental to the overall convergence rate and may cause diver-
gence. To circumvent this problem, a simple yet very e�ective treatment is adopted: Once
the r-values are extrapolated, a check is performed to make sure they are within bounds.
If any of the r-values is found to be unbounded, the r-�uidic volume fraction equation is
solved starting with the interpolated values until all of the r-values are within the set bounds.
Typically less than 10 iterations are needed. This treatment has been found to be very e�ec-
tive and to preserve the convergence acceleration rate. The practices of solving the volume
fraction equations only on the �ne grid or forcing the extrapolated unbounded values to be
within the set bounds or discarding corrections that result in unbounded values [14] proved
to be ine�ective and slowed the convergence rate considerably.
For the k–� turbulence model, the treatment suggested by Cornelius et al. [33] is adopted.

This approach is based on the observation that the application of wall functions to the coarse
grids would lead to unphysical values because of the relatively large distance between the
wall and the boundary cell centre. Thus, at wall boundaries the restricted �ne grid values of
k and � are held constant, and hence no corrections are calculated. In order to satisfy the
realizability constraint, the restricted turbulence properties and prolongated correction values
are modi�ed accordingly.
In addition to the FMG strategy, the PG approach is also tested. This approach di�ers from

the FMG method in that the solution moves in one direction from the coarse to the �ne grids
with the initial guess on level n + 1 obtained by interpolation from the converged solution
on level n (Figure 2(a)). As such, the acceleration over the SG method obtained with this
approach is an indication of the e�ect of initial guess on convergence.

RESULTS AND DISCUSSION

The performances of the above-described solution procedures are assessed in this section
by presenting solutions to the following four two-dimensional two-�uid �ow problems: (i)
turbulent incompressible bubbly �ow in a pipe, (ii) turbulent incompressible air-particle �ow
in a pipe, (iii) compressible dilute air-particle �ow over a �at plate and (iv) inviscid transonic
dusty �ow in a converging–diverging nozzle. Results are presented in terms of the CPU-time
needed to converge the solution to a set level and of the convergence history. Moreover,
solutions are obtained for a number of grids in order to assess the merit of the SG, PG and
FMG strategies with increasing grid density. Furthermore, predictions are compared against
available experimental data and/or numerical/theoretical values. The residual of a variable �
at the end of an outer iteration is de�ned as

RES(k)� =
∑
c:v:

∣∣∣∣AP�(k)P −∑
nb
Anb�

(k)
nb − B(k)P

∣∣∣∣ (31)
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For global mass conservation, the imbalance in mass is given by

RESC =
∑
k

∑
c:v:

∣∣∣∣∣ (r
(k)
P �

(k)
P )− (r(k)P �(k)P )old

�t
�−�P[r (k)�(k)u(k) ·S](k)

∣∣∣∣∣ (32)

All residuals are normalized by their respective inlet �uxes. Computations are terminated
when the maximum normalized residual of all variables, drops below a very small number �s
(typically �s=10−6). For a given problem, the same value of �s is used with all methodologies.
In all problems, the �rst �uid represents the continuous phase (denoted by a superscript (c)),
which must be �uid, and the second phase is the disperse phase (denoted by a superscript
(d)), which may be solid or �uid. Unless otherwise speci�ed the HR SMART scheme is
used in all computations reported in this study. For a given problem, all results are generated
starting from the same initial guess. However, it should be stated that in iterative techniques
di�erent initial guesses might require di�erent computational e�orts.

Problem 1: Turbulent upward bubbly �ow in a pipe

Many experimental and numerical studies involving the prediction of radial phase distribution
in turbulent upward air–water �ow in a pipe have appeared in the literature (e.g. References
[34, 35]). These studies indicate that the lateral forces that most strongly a�ect the void
distribution are the lateral lift force and the turbulent stresses. As such, in addition to the
usual drag force, the lift force is considered as part of the interfacial force terms in the
momentum equations. In the present work, the interfacial drag forces per unit volume are
given by [35]

(I xM )
(c)
D =−(I xM )(d)D =0:375

CD
rp
�(c)r (d)r(c)Vslip(u(d) − u(c)) (33)

(I yM )
(c)
D =−(I yM )(d)D =0:375

CD
rp
�(c)r (d)r(c)Vslip(v(d) − v(c)) (34)

where rp is the bubble radius. The drag coe�cient CD varies as a function of the bubble
Reynolds and Weber numbers de�ned as

ReP=2
rp
�(c)l
Vslip

We=4�(c)
r2p
�
Vslip

(35)

where �, the surface tension, is assigned a value of 0:072 N=m for air–water systems. The
drag coe�cient is computed using the following correlations [35]:
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CD =




16
Rep

for Rep ¡ 0:49
20

Re0:643p
for 0:49¡ Rep ¡ 100

6:3
Re0:385p

for Rep � 100
8
3 for Rep � 100 and We ¿ 8
We
3 for Rep � 100 and Rep ¿ 2065:1=We2:6

(36)

Many investigators have considered the modelling of lift forces [36]. Based on their work,
the following expressions are employed for the calculation of the interfacial lift forces per
unit volume:

(IM )
(c)
L =− (IM )(d)L =Cl�(c)r (d)(u(d) − u(c))× (∇× u(c)) (37)

where Cl is the interfacial lift coe�cient calculated from

Cl =Cl a(1− 2:78〈0:2; r (d)〉) (38)

where 〈a; b〉 denotes the minimum of a and b and Cl a is an empirical constant.
The e�ect of bubbles on the turbulent �eld is very important. In this work, turbulence is

assumed to be a property of the continuous liquid phase (c) and is computed by solving
Equations (4) and (5) with I (c)k and I (c)� given by [35]

I (c)k =∇ ·
[
�(c)

(
�(c)t
�r

)
k(c)∇r(c)

]
+ r(c)Pb (39)

I (c)� =∇ ·
[
�(c)

(
�(c)t
�r

)
�(c)∇r(c)

]
+ r(c)C1�Pb

�(c)

k(c)
(40)

where �r is the turbulent Schmidt number for volume fractions, and Pb is the production rate
of k(c) by drag due to the motion of the bubbles through the liquid and is given by

Pb=
0:375CbCD�(c)r (d)r(c)V 2slip

rp
(41)

In Equation (41) Cb is an empirical constant representing the fraction of turbulence induced
by bubbles that goes into large-scale turbulence of the liquid phase. Moreover, as suggested
in Reference [35], the �ux representing the interaction between the �uctuating velocity and
volume fraction is modelled via a gradient di�usion approximation and added as a source
term in the continuity (∇ · (�(k)D(k)∇r (k))) and momentum (∇ · (�(k)D(k)u(k)∇r (k))) equations
with the di�usion coe�cient D given by

D(k) =
�(k)t
�r

(42)

The turbulent viscosity of the dispersed air phase (d) is related to that of the continuous
phase through

�(d)t =
�(c)t
�f

(43)
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Figure 3. Comparison of fully developed liquid velocity and void fraction pro�les for turbulent upward
bubbly �ow in a pipe against Seriwaza et al. data.

where �f is the turbulent Schmidt number for the interaction between the two �uids. The
turbulence model described above is a modi�ed version of the one described in Reference
[35] since the turbulent viscosities of both �uids are allowed to be di�erent in contrast to
what is done in Reference [35]. The di�erence is accomplished through the introduction of
the �f parameter, and hence di�erent di�usion coe�cients (D(k)) are used for the di�erent
�uids. Results are compared against the experimental data reported by Seriwaza et al. [34].
In the Seriwaza et al. experiment [34], the Reynolds number based on super�cial liquid

velocity and pipe diameter is 8× 104, the inlet super�cial gas and liquid velocities are 0.077
and 1:36m=s, respectively, and the inlet void fraction is 5:36× 10−2 with no slip between the
incoming �uids. Moreover, the bubble diameter is taken as 3mm [35], while the �uid properties
are taken as �(c) = 1000 kg=m3; �(d) = 1:23 kg=m3 and �(c)l = 10

−6 m2=s. The constants in the
model were set to: Cl a=0:075; �f = 0:5; �r =0:7 and Cb = 0:05. Predicted radial pro�les of
the vertical liquid velocity and void fraction presented in Figure 3 using a grid of size 96× 32
control volumes concur very well with measurements and compare favourably with numerical
pro�les reported by Boisson and Malin [35]. As shown, the void fraction pro�le indicates
that gas is taken away from the pipe centre towards the wall. This is caused by the lift force,
which drives the bubbles towards the wall.
Having established the credibility of the physical model and numerical procedure, the next

task is to compare the e�ects of the grid size and solution methodology on convergence and
CPU time. For that purpose the calculations are performed on �ve di�erent grids of sizes
18× 3; 36× 6; 72× 12; 144× 24 and 288× 48 control volumes. On each grid, solutions
are generated using the SG, PG and FMG strategies. Results are displayed in the form of
(i) the normalized residuals as a function of outer iterations (Figures 4(a) and 4(b)), and
(ii) normalized CPU time (Table I(a)) needed for the maximum normalized residual of all
variables and for both �uids to drop below �s=10−6. In Figure 4(a), the residuals of the
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Figure 4. (a) Mass and U (c) residual history plots for the FMG, PG and SG methods on the �nest
mesh for turbulent bubbly �ow in a pipe; (b) U (c) residual history plots for the FMG method on the

various levels for turbulent bubbly �ow in a pipe.

overall mass conservation equation and momentum equation of the carrier phase (U (c)) are
presented on the �nest grid for the SG, PG and FMG methodologies. As shown, the SG
method requires about 35 000 iterations to converge, whereas convergence with the PG grid
method is achieved in about 10 000 iterations. Thus, a reduction ratio of 3:5 (=35 000=10 000)
in the number of iterations is achieved with what amounts to simply a better initial guess.
Convergence with the FMG method, however, requires about 1600 iterations, which represents
a reduction ratio of 6.25 over the PG method and 21.9 over the SG method. The large
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Table I. (a) CPU times.

Grid (c.v.) SG Levels PG FMG PG/FMG SG/FMG

(a) Turbulent bubbly �ow in a pipe
18× 3 0.73 1 0.73 0.73 1.00 1.00
36× 6 4.77 2 3.82 3.63 1.05 1.31
72× 12 72.75 3 34.23 25.29 1.35 2.88
144× 24 876.48 4 398.33 149.52 2.66 5.86
288× 48 38840.37 5 14975.97 2480.34 6.04 15.66

(b) Turbulent air-particle �ow in a pipe
12× 5 0.56 1 0.56 0.56 1.00 1.00
24× 10 3.78 2 3.26 2.78 1.17 1.36
48× 20 41.14 3 33.27 16.96 1.96 2.43
96× 40 464.55 4 368.12 92.35 3.99 5.03
192× 80 5232.38 5 4833.98 725.40 6.66 7.21

(c) Compressible dusty �ow over a �at plate
13× 6 1.34 1 1.34 1.34 1.00 1.00
26× 12 5.44 2 5.05 3.75 1.35 1.45
52× 24 41.02 3 36.47 18.13 2.01 2.26
104× 48 500.05 4 376.12 101.49 3.71 4.93
208× 96 7738.08 5 4181.42 815.38 5.13 9.49

(d) Compressible dusty �ow in a converging–diverging nozzle
47× 20 28.20 1 28.20 28.20 1.00 1.00
94× 40 470.82 2 334.15 255.30 1.31 1.84
188× 80 23168.56 3 2912.77 2558.71 1.14 9.05

di�erence between the PG and FMG is an indication of the e�ectiveness of the FMG method in
dealing with the added non-linearity in multi-�uid �ows. The e�ect of grid size on convergence
of the FMG method is depicted in Figure 4(b). As shown, the number of iterations increases
with increasing grid density and could be attributed to: (i) the additional coupling between
the �uids of the two-�uid �ow, which results in larger source terms (as re�ected by the cyclic
convergence behaviour of the SG and PG methods and should be minimized by resolving the
coupling in a more implicit manner (Figure 4(a)), and (ii) the special treatment used for the
k and � equations which does not scale properly through the di�erent grids. Nevertheless,
the acceleration rate of the FMG method over the SG and PG methods increases on denser
meshes, as can be inferred from Table I(a) where the CPU time needed by the SG, PG and
FMG methods on all grids are presented. In addition, the ratio of the time needed by the SG
and PG methods to the one needed by the FMG method is displayed. This allows a direct
quantitative assessment of their acceleration rate. The speed of the FMG method over the PG
and SG methods is seen to increase with increasing grid density and to be about 6 and 15.7
times faster than the PG and SG methods, respectively, on the �nest grid.

Problem 2: Turbulent air-particle �ow in a vertical pipe

Here, the upward �ow of a dilute gas–solid mixture in a vertical pipe is simulated. As in the
previous problem, the axi-symmetric form of the gas and particulate transport equations are
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employed. As reported in several studies [37, 38], the e�ects of interfacial virtual mass and
lift forces are small and may be neglected and the controlling interfacial force is drag [39],
which is given by

(I xM )
(c)
D =− (I xM )(d)D =

3
8
CD
rp
�(c)r (d)Vslip(u(d) − u(c)) (44)

(I yM )
(c)
D =− (I yM )(d)D =

3
8
CD
rp
�(c)r (d)Vslip(v(d) − v(c)) (45)

where rp represents the particle’s radius, CD the drag coe�cient computed from

CD =




24
Rep

for Rep ¡ 1
24
Rep
(1 + 0:15Re0:687p ) for 1¡ Rep ¡ 1000

0:44 for Rep ¿ 1000

(46)

and Rep the Reynolds number based on the particle size as de�ned in Equation (35).
As before, turbulence is assumed to be a property of the continuous gas phase (c) and is

predicted using a two-�uid k–� model. Several extensions of the k–� model for carrier-phase
turbulence modulation have been proposed in References [27–29] and the one suggested by
Chen and Wood [28], which introduces additional source terms into the turbulence transport
equations, is adopted here. Thus, the turbulent viscosity is computed by solving the turbu-
lence transport equations (Equations (4) and (5)) for the continuous phase with I (c)k and I (c)�
evaluated using the following relations [28]:

I (c)k =−2�(d)r(c)r (d) k
(c)

	p
(1− e−0:0825	p=	e) (47)

I (c)� =−2�(d)r(c)r (d) �
(c)

	p
(48)

where 	p and 	e are timescales characterizing the particle response and large-scale turbulent
motion, respectively, and are computed from

	p=
�(d)r (d)

FD
Vslip

	e=0:165
k(c)

�(c)

(49)

with FD being the magnitude of the inter-�uid drag force per unit volume. The turbulent eddy
viscosity of the dispersed phase (d) is considered to be a function of that of the continuous
phase and is computed using Equation (43).
The above-described model is validated against the experimental results of Tsuji et al. [37].

Results are replicated here for the case of an air Reynolds number, based on the pipe diameter
(of value 30:5 mm), of 3:3× 104 and a mean air inlet velocity of 15:6 m=s using particles of
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Figure 5. Comparison of fully developed gas and particle velocity pro�les
for turbulent air-particle �ow in a pipe.

diameter 200 �m and density 1020 kg=m3. In the computations, the mass-loading ratio at inlet
is considered to be 1 with no slip between the �uids, and �f and �r are set to 5 and 1010,
respectively (i.e. the interaction terms included for bubbly �ows are neglected here). Figure
5 shows the fully developed gas and particles mean axial velocity pro�les generated using a
grid of size 96× 40 c.v. It is evident that there is generally a very good agreement between
the predicted and experimental data with the gas velocity being slightly over predicted and the
particle velocity slightly under predicted. Moreover, close to the wall, the model predictions
indicate that the particles have higher velocities than the gas, which is in accord with the
experimental results of Tsuji et al. [37].
Having checked the correctness of the physical model and numerical procedure, the prob-

lem is solved over �ve di�erent grids of sizes 12× 5; 24× 10; 48× 20; 96× 40 and 192× 80
control volumes using the SG, PG and FMG methodologies. As in the previous problem, re-
sults are displayed in the form of (i) residual plots as a function of outer iterations (Figure 6),
and (ii) normalized CPU time (Table I(b)) needed for the maximum normalized residuals of
all variables and for all �uids to drop below �s=10−6. In Figure 6(a), residuals of the carrier
phase’s axial velocity (U (c)) over the densest grid using the SG, PG and FMG methodolo-
gies are presented. As shown (Figure 6(a)), the performance of the PG method is poor as
compared to that of the FMG method with the SG method requiring 3600 iterations, the PG
method 3100 iterations (representing a reduction ratio of 1.16), and the FMG method 260
iterations (a reduction ratio of 13.85). This again clearly demonstrates the e�ectiveness of the
FMG method in dealing with the added non-linearity of multi-�uid �ows for this problem.
As depicted in Figure 6(b), the number of iterations needed to reach the desired level of
convergence increases on denser grids. The CPU times needed by the SG, PG and FMG
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Figure 6. (a) U (c) residual history plots for the FMG, PG and SG methods on the �nest mesh for
turbulent air-particle �ow in a pipe; (b) mass residual history plots for the FMG method on the various

levels for turbulent air-particle �ow in a pipe.

methods on all grid sizes in addition to the SG/FMG and PG/FMG ratios are displayed in
Table I(b). As in the previous problem, the e�ectiveness of the FMG method over the PG
and SG methods improves with increasing grid density to be about 6.66 and 7.21 times faster
than the PG and SG methods, respectively, on the �nest mesh.
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Figure 7. (a) The three di�erent regions within the boundary layer of dusty �ow over a �at plate; (b)
comparison of fully developed gas and particle velocity pro�les inside the boundary layer at di�erent

axial locations for dilute two-phase �ow over a �at plate.

Problem 3: Compressible dilute air-particle �ow over a �at plate

As has been demonstrated in several studies [40–42], two-�uid �ow greatly changes the main
features of the boundary layer over a �at plate. Typically, three distinct regions are de�ned
in the two-�uid boundary layer (Figure 7(a)), based on the importance of the slip velocity
between the two �uids: a large-slip region close to the leading edge, a moderate-slip region
further down, and a small-slip zone far downstream. The characteristic scale in this two-�uid
�ow problem is the relaxation length 
e [41], de�ned as


e=
2
9
�(d)r2pu∞
�(c)

(50)
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where u∞ is the free stream velocity. The three regions are de�ned according to the order
of magnitude of the slip parameter x∗= x=
e. In the simulation, the viscosity of the �uid is
considered to be a function of temperature according to Reference [41]

�(c) =�ref

(
T (c)

Tref

)0:6
(51)

where the reference viscosity and temperature are �ref = 1:86× 10−5 N s=m2 and Tref = 303◦K.
Drag is the only retained interfacial force as it dominates the other interfacial forces. It is
computed from Reference [41] as

(I xM )
(c)
D =−(I xM )(d)D =

9
2
CD
r2p
r (d)�(c)(u(d) − u(c)) (52)

(I yM )
(c)
D =−(I yM )(d)D =

9
2
CD
r2p
r (d)�(c)(v(d) − v(c)) (53)

where the drag coe�cient is given by

CD =
1
50
Rep +

7
6
Re0:15p (54)

In the energy equation, heat transfer due to radiation is neglected and only convective heat
transfer around an isolated particle is considered. Under such conditions, the interfacial terms
in the gas (c) and particles (d) energy equations reduce to [41]:

I (c)E =Qg−p + Fg−p · u(d) (55)

I (d)E =−Qg−p (56)

where

Fg−p = (I xM )
(c)
D i+ (I

y
M )

(c)
D j (57)

Nu=2:0 + 0:6 Re1=2p (Pr(c))1=3 (58)

Qg−p =
3
2
r (d)
(c)Nu

r2p
(T (d) − T (c)) (59)

In the above equations, Nu is the Nusselt number, Pr(c) the gas Prandtl number, 
(c) the gas
thermal conductivity, T the temperature and other parameters are as de�ned earlier. In the
simulation, the particle diameter, particle Reynolds number, material density, Prandtl number
and mass load ratio are set to 10 �m; 10; 1766 kg=m3, 0.75 and 1, respectively. The wall
boundary is treated as a no-slip boundary for the gas phase (i.e. both components of the gas
velocity are set to zero), and as a slip boundary condition for the particles phase (i.e. the
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normal �uxes are set to zero). In order to bring all quantities to the same order of magnitude,
results are displayed using the following dimensionless variables:

x∗=
x

e
; y∗=

y

e

√
Re; u∗=

u
u∞
; v∗=

v
u∞

√
Re; Re=

�u
e
�

(60)

Figure 7(b) shows the results for the steady �ow obtained on a rectangular domain with a
mesh of density 104× 48 c.v. stretched in the y-direction. The �gure depicts the development
of gas and particles velocity pro�les within the three regions mentioned earlier. In the near
leading edge area (x∗=0:1), the gas velocity is adjusted at the wall to obtain the no-slip
condition as for the case of a pure gas boundary layer. The particles have no time to adjust
to the local gas motion and there is a large velocity slip between the �uids. In the transition
region (x∗=1), signi�cant changes in the �ow properties take place. The interaction between
the �uids cause the particles to slow down while the gas accelerates. In the far downstream
region (x∗=5), the particles have ample time to adjust to the state of the gas motion, the slip
is very small, and the solution tends to equilibrium. These results are in excellent agreement
with numerical solutions reported by Thevand et al. [42] (Figure 7(b)).
As in the previous tests the problem is solved over �ve di�erent grids here with 13× 6;

26× 12; 52× 24; 104× 48 and 208× 96 control volumes using the SG, PG and FMG methods.
In Figure 8(a), reduction with iterations of the U (c)—residuals on the densest grid (208× 96
c.v.) using the SG, PG and FMG methodologies are presented. As shown, the FMG method
achieves the desired level of convergence in 430 iterations, the PG method in 2650 iterations,
and the SG method in 5400 iterations. As such the iteration reduction ratios of the FMG
and PG methods over the SG method are ∼= 12:6 and 2, respectively. This is an additional
indication of the superiority of the FMG method over the PG method in dealing with the
added non-linearity in compressible multi-�uid �ows. Increasing the grid density has the
same e�ects on the performance of the FMG method as in the previous two test problems
(Figure 8(b)). This is attributed, in addition to the added non-linearity in multi-�uid �ows,
to the large number of parameters a�ecting the computations, which are di�cult to control,
such as under-relaxation factors, number of internal restriction and prolongation iterations at
each level, number of algebraic solver sweeps for each dependent variable, etc. and also to
the known degradation of the SG/PG performance on �ne grids.
The CPU-times for all cases considered are presented in Table I(c). The general trend is

similar to the previous cases with the SG requiring the highest CPU e�ort and the FMG
being the most e�cient on all grids. Nevertheless, the PG method is always cheaper than
the SG method indicating the importance of the initial guess in iterative solvers. In fact,
the use of the PG method on the dense grid accelerates the convergence rate by 185%
whereas an acceleration of 949% is realized with the FMG method. Moreover, the virtues of
both the FMG and PG methods increase as the number of control volumes used increases
(Table I(c)).

Problem 4: Inviscid transonic dusty �ow in a converging–diverging nozzle

The last test considered deals with the prediction of supersonic dilute air-particle �ow in
an axi-symmetric converging–diverging rocket nozzle. Several researchers have analysed the
problem and data is available for comparison [43–48]. In most of the reported studies, a
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Figure 8. (a) U (c) residual history plots for the FMG, PG and SG methods on the �nest mesh for
compressible dusty �ow over a �at plate; (b) U (c) residual history plots for the FMG method on the

various levels for compressible dusty �ow over a �at plate.

shorter diverging section, in comparison with the one considered here, has been used when
predicting the two-�uid �ow. Two-�uid �ow results for the long con�guration have only
been reported by Chang et al. [44]. The �ow is assumed to be inviscid and the single-�uid
�ow results are used as an initial guess for solving the two-�uid �ow problem. The physical
con�guration (Figure 9(a)) is the one described in Reference [44]. The viscosity of the �uid
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Figure 9. (a) Physical domain for the dusty gas �ow in a converging–diverging nozzle; (b) volume
fraction contours and (c) particle velocity vectors for dusty gas �ow in a converging–diverging nozzle.

varies with the temperature according to Sutherland’s law for air:

�(c) = 1:458× 10−6 T (c)
√
T (c)

T (c) + 110:4
(61)

The coupling between gas and particle phases is through the interfacial momentum and energy
terms. The force exerted on a single particle moving through a gas [45] is given as

fx =6�rpfD�(c)(u(d) − u(c)) (62)

fy =6�rpfD�(c)(v(d) − v(c)) (63)

so that for N particles in a unit volume the e�ective drag force is

(I xM )
(c)
D =−(I xM )(d)D =

9
2
r (d)

r2P
fD�(c)(u(d) − u(c)) (64)

(I yM )
(c)
D =−(I yM )(d)D =

9
2
r (d)

r2P
fD�(c)(v(d) − v(c)) (65)
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where fD is the ratio of the drag coe�cient CD to the Stokes drag CD0 =24=ReP and is given
by [44]

fD =1 + 0:15 Re0:687p +
0:0175 Rep

1 + 4:25× 104 Re−1:16p
Rep ¡ 3× 105 (66)

The heat transferred from gas to particle phase per unit volume is given as [45]

Qg−p=
3
2
r (d)

rP

(c) Nu(T (d) − T (c)) (67)

where 
(c) is the thermal conductivity of the gas and Nu the Nusselt number, which is written
as [45]

Nu=2+ 0:459 Re0:55P Pr0:33c (68)

The gas-particle inter-�uid energy term is given by

I (c)E =
9
2
r (d)

r2P
fD�(c)(u(d) − u(c))ud + 92

r (d)

r2P
fD�(c)(v(d) − v(c))vd

+
3
2
r (d)

rP

(c) Nu(T (d) − T (c)) (69)

I (d)E =
3
2
r (d)

rP

(c) Nu(T (c) − T (d)) (70)

where the �rst two terms on the right-hand side of Equation (69) represent the energy ex-
change due to momentum transfer.
The physical quantities employed are similar to those used in Reference [44]. The gas stag-

nation temperature and pressure at inlet to the nozzle are 555◦K and 10:34× 105N=m2, respec-
tively. The speci�c heat for the gas and particles are 1:07× 103J=kg ◦K and 1:38× 103J=kg ◦K,
respectively, and the particle density is 4004:62 kg=m3. With a zero in�ow velocity angle, the
�uid is accelerated from subsonic to supersonic speed in the nozzle. The inlet velocity and
temperature of the particles are taken to be the same as those of the gas phase. Results for
a particle of radius 10 �m with a mass fraction �=0:3 are presented using a grid of size
188× 40 c.v. Figure 9(b) shows the particle volume fraction contours while Figure 9(c) dis-
plays the velocity distribution. As shown, a large particle-free zone appears due to the inability
of the particles to turn around the throat corner. These �ndings are in excellent agreement
with published results reported in Reference [44] and others using di�erent methodologies.
A quantitative comparison of current predictions with published experimental and numerical
data is presented in Figure 10 through gas Mach number distributions along the wall (Figure
10(a)) and centreline (Figure 10(b)) of the nozzle for the one-�uid and two-�uid �ow situa-
tions. As can be seen, the one-�uid �ow predictions fall on top of experimental data reported
in References [46–48]. Since the nozzle contour has a rapid contraction followed by a throat
with a small radius of curvature, the �ow near the throat wall is overturned and inclined to
the downstream wall. A weak shock is thus formed to turn the �ow parallel to the wall. This
results in a sudden drop in the Mach number value and as depicted in Figure 10(b), this
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Figure 10. Comparison of one-phase and two-phase gas Mach number distributions along the wall and
(b) centreline of dusty �ow in a converging–diverging nozzle.

sudden drop is correctly envisaged by the solution algorithm with the value after the shock
being slightly over predicted.
Due to the unavailability of experimental data, two-�uid �ow predictions are compared

against the numerical results reported in Reference [44]. As displayed in Figures 10(a)
and 10(b), both solutions are in good agreement with each other indicating once more the
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Figure 11. (a) Mass residual history plots for the FMG, PG and SG methods on the �nest mesh for
compressible dusty �ow in a converging–diverging nozzle; (b) mass residual history plots for the FMG

method on the various levels for compressible dusty �ow in a converging–diverging nozzle.

correctness of the calculation procedures. The lower gas Mach number values in the two-�uid
�ow is caused by the heavier particles (�(d) � �(c)), which reduce the gas velocity. Moreover,
owing to the particle-free zone, the Mach number di�erence between the one- and two-�uid
�ows along the wall is smaller than that at the centreline.
The problem is solved over three di�erent grids of sizes 47× 20; 94× 40 and 188× 80 cells

and results are displayed in the form of residual history plots (Figure 11) and CPU times
(Table I(d)). As shown in Figure 11(a), the number of iterations required by the PG and
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FMG methods is relatively close with the one required by the SG method being much higher.
To promote convergence with the SG method on the 188× 80 grid, it was necessary to start
the computations with very low under-relaxation factors. It was not possible to increase these
factors until the normalized residuals have dropped to around 8 (Figure 11(a)). Beyond that
point, the higher under-relaxation factor values resulted in a fast convergence rate. In fact, the
slope of the SG residual curve beyond that point, is nearly equal to the one obtained by the
PG and FMG methods (Figure 11(a)), which is a clear indication of the importance of the
initial guess in supersonic �ows. The proximity of performance of the PG and FMG method
is due to: (i) the higher importance of initial guess in supersonic �ows (as explained above),
and (ii) the degradation in performance of the multi-grid approach as the governing equations
become more hyperbolic (i.e. as Mach number becomes much higher than 1, in this case it
reaches a value close to 3.6) since it is best suited for elliptic equations. As in the previous
problems, Figure 11(b) indicates that the number of iterations required by the FMG method
increases with increasing grid density for the reasons stated earlier.
The CPU-times presented in Table I(d) con�rm these conclusions and reveal the close

performance of the PG and FMG approaches with the CPU-time needed by the FMG method
being always lower. On the 94× 40 grid, the FMG method is 1.31 times faster than the PG
method, while it is 1.14 times faster on the densest grid. In comparison with the SG method,
the FMG approach is 9 times faster on the �nest mesh.

CLOSING REMARKS

This work addressed the e�ectiveness of the multi-grid approach in dealing with the added
non-linearity of multi-�uid �ows at all speeds. For that purpose the performance of the FMG
method was compared against that of the SG and PG methods by solving four two-dimensional
two-�uid �ow problems representing a wide variety of physical situations. Results clearly
demonstrated the robustness of the FMG method and its ability to tackle the added non-
linearity of multi-�uid �ows. Moreover, even though the rate of convergence is complex, the
FMG method achieved very good reduction factors over the PG and SG methods reaching a
value as high as 15.

NOMENCLATURE

A(k)P coe�cients in the discretized equation for �(k)

B(k)P source term in the discretized equation for �(k)

B(k) body force per unit volume of �uid k
Cl interfacial lift coe�cient
CD drag coe�cient

C(k)� coe�cient equals to 1=R(k)T (k)

C(k)P speci�c heat of �uid k

D(k)P [�
(k)] the vector form of the D operator

G(k) turbulence production rate of �uid k
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HP[�(k)] the H operator
HP[u(k)] the vector form of the HP operator
I(k) inter-phase transfer term
J (k)Df di�usion �ux of �(k) across cell face ‘f’
J(k)Cf convection �ux of �(k) across cell face ‘f’
k(k) turbulence kinetic energy of �uid k
Nu Nusselt number
P pressure
Pb turbulence production rate due to drag
Pr (k); Pr(k)t laminar and turbulent Prandtl number for �uid k
q̇(k) heat generated per unit volume of �uid k
Q(k) general source term of �uid k
r (k) volume fraction of �uid k
Rep bubble Reynolds number
Sf surface vector
t time
T (k) temperature of �uid k
U (k)
f interface �ux velocity (v(k)f ·Sf ) of �uid k
u(k) velocity vector of �uid k
u(k); v(k) velocity components of �uid k
We Weber number
x; y Cartesian co-ordinates
‖a; b‖ the maximum of a and b

Greek symbols

�(k) density of �uid k
�(k) turbulence dissipation rate of �uid k
� surface tension
�(k) di�usion coe�cient of �uid k
�(k) dissipation term in energy equation of �uid k
�(k) general scalar quantity associated with �uid k
�r Schmidt number for volume fractions
�t the turbulent Schmidt number
	 characteristic timescale

 relaxation length
∇ del operator
�P[�(k)] the � operator
�(k); �(k)t laminar and turbulent viscosity of �uid k
� cell volume
�t time step

Subscripts

f refers to control volume face f
P refers to the P grid point
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Superscripts

C refers to convection contribution
D refers to di�usion contribution
(k) refers to �uid/phase k
(k)∗ refers to updated value at the current iteration
(k)◦ refers to values of �uid/phase k from the previous iteration
(k)′ refers to correction �eld of phase/�uid k
m refers to �uid/phase m
old refers to values from the previous time step
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